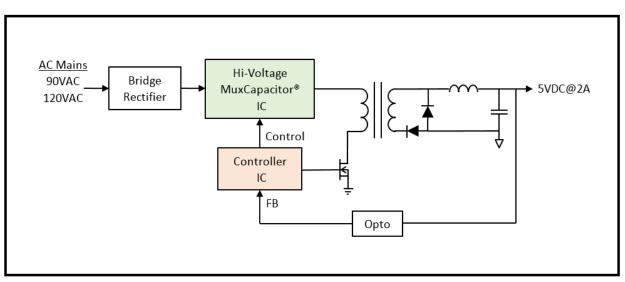


HS100 MuxCapacitor[®] Plus Forward Converter Chip Set

The Helix Semiconductors HS100 Mux-Capacitor Plus Forward Converter two-chip set solution offers the highest energy efficiency for a 110VAC/10W or 220VAC/5W AC-DC isolated power supply. A multi-gain MuxCapacitor delivers the optimum voltage to a forward converter. The forward converter employs an advanced pulse skipping algorithm to maximize no-load and standby operation power efficiency.


The HS100 two chip set includes reset, internal references and regulation & gain control logic. The chip set's high efficiency reduces thermal loading for lower packaging costs. Other output voltages are available with a simple gain trim.

Features

- 85-264VAC Input Voltage
- High Voltage MuxCapacitor
- Soft-Start
- 5V, 2A Output Voltage @ 120VAC
- 5V, 1A Output Voltage @ 240VAC
- ±5% Output Voltage Regulation
- > 95% Efficiency @ 2A
- > 92% Efficiency @ 200mA
- 10mW No-Load Power Consumption

Applications

- Smart Outlets
- IoT and IIoT Gateways
- Remote Sensors
- Smoke and CO Detectors

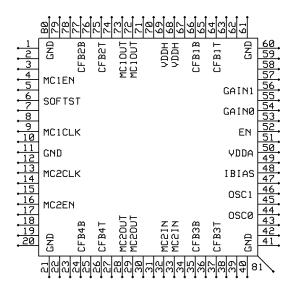
HS100 Block Diagram

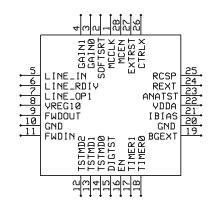
Table of Contents

1		Pin C	Configuration and Description5
2		Abso	lute Maximum Ratings9
3		Reco	mmended Operating Conditions10
4		Parar	metric Specifications11
5		Funct	tional Description
	5.	1	HS100 MuxCapacitor IC20
		5.1.1	MuxCapacitor Voltage Divider21
		5.1.2	Dickson Charge Pumps21
		5.1.3	Level Shifters21
		5.1.4	Soft-Start Current Limiter21
		5.1.5	3.2MHz Oscillator22
	5.	2	HS100 Control IC23
		5.2.1	Line-Side Bandgap Voltage and Current Reference Generator
		5.2.1	Ene-Side Bandgap Voltage and Current Reference Generator
		5.2.1	
			5.0V Linear Voltage Regulator24
		5.2.2	5.0V Linear Voltage Regulator
		5.2.2 5.2.3	5.0V Linear Voltage Regulator
		5.2.2 5.2.3 5.2.4	5.0V Linear Voltage Regulator
		5.2.2 5.2.3 5.2.4 5.2.5	5.0V Linear Voltage Regulator
		5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	5.0V Linear Voltage Regulator 24 Power-on-Reset 24 VTOI and Current Manifold 25 Oscillator 25 10V Linear Voltage Regulator 25 Forward PID Controller 25
		5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6	5.0V Linear Voltage Regulator 24 Power-on-Reset 24 VTOI and Current Manifold 25 Oscillator 25 10V Linear Voltage Regulator 25 Forward PID Controller 25 Country Selector 26
	5.	5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	5.0V Linear Voltage Regulator 24 Power-on-Reset 24 VTOI and Current Manifold 25 Oscillator 25 10V Linear Voltage Regulator 25 Forward PID Controller 25 Country Selector 26
6	5.	5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 3	5.0V Linear Voltage Regulator24Power-on-Reset24VTOI and Current Manifold25Oscillator2510V Linear Voltage Regulator25Forward PID Controller25Country Selector26Over-Current Protection26
6 7	5.	5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 3 Refer	5.0V Linear Voltage Regulator
	5.	5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 3 Refer Packa	5.0V Linear Voltage Regulator

Table of Tables

1	HS100 MuxCapacitor IC Pin Assignments
2	HS100 Control IC Pin Assignments7
3	Absolute Maximum Ratings9
4	Recommended Operating Conditions10
5	Line-Side Bandgap Voltage Reference11
6	5.0V Linear Voltage Regulator
7	Power-On-Reset
8	Hysteresis Comparators (Country Selector)13
9	MuxCapacitor Voltage Divider (MuxCapacitor IC Only)14
10	Low-Frequency RC Oscillator
11	3.2MHz Oscillator (MuxCapacitor IC Only)15
12	Sawtooth Generator15
13	Forward PID Control Loop16
14	CMOS Digital Inputs
15	CMOS Digital Outputs
16	MuxCapacitor Gain Selection Truth Table21
17	Oscillator Frequency Control
18	Soft-Start Timer Program Settings
19	Test Select Truth Table
20	NAND-Tree Test Sequence
21	HS100 System Characteristics
22	Revision History


Table of Figures


1	Pin Configuration	5
	HS100 MuxCapacitor IC Block Diagram	
3	HS100 Control IC Block Diagram	. 19
4	POR Threshold Voltages	.24
5	Digital Control Block Diagram	. 27
6	HS100 Japan/US Application Schematic	.31
7	HS100 Universal Application Schematic	.32
8	HS100 MuxCapacitor IC Package Drawing	.33
9	HS100 Control IC Package Drawing	.34

1 Pin Configuration and Description

Figure 1: Pin Configuration

HS100 Control IC – PLCC28

HS100 MuxCapacitor IC – QFN80

The HS100 chip set is provided in prototype packaging for test development purposes ONLY. Special handling precautions are required due to the presence of high voltage.

Table 1: HS100 MuxCapacitor IC Pin Assignments

Pin No.	Name	Description
4	MC1EN	MuxCapacitor 1 Enable: Input Pin
		0 = Disable, 1 = Enable
		Internal Pull-Down
6	SOFTST	Soft-Start Timer: Input Pin
		0 = Disable, 1 = Enable
		Internal Pull-Down

9	MC1CLK	MuxCapa	citor 1 Clo	ck: Input Pin					
11	GND	-	ge Ground						
13	MC2CLK	MuxCapa	citor 2 Clo	ck: Input pin					
16	MC2EN	MuxCapa	citor 2 Ena	ble: Input Pin					
		0 = Disabl	e, 1 = Enal	ole					
		Internal P	ull-Down						
21, 40,	GND	High Volta	igh Voltage Ground						
61, 80									
24	СГВ4В	External F	xternal Flying Capacitor 4 (-)						
26	CFB4T	External F	xternal Flying Capacitor 4 (+)						
28, 29	MC2OUT	MuxCapa	AuxCapacitor 2: Analog Output Pin						
32, 33	MC2IN	External N	xternal MuxCapacitor 2: Analog Input Pin						
35	CFB3B	External F	External Flying Capacitor 3 (-)						
37	CFB3T 🥂		External Flying Capacitor 3 (+)						
44	OSCO	Oscillator Frequency Control: Input Pins							
46	OSC1	OSC1	OSC1 OSC0 Freq Out - MHz						
		0	0 0 1.6 MHz						
		0	1	0.8 MHZ					
		1	0	0.4 MHz					
		1	1	Disabled					
			ull-Downs						
48	IBIAS	-		ference: Analog	-				
50	VDDA			Analog Input Pi	n				
52	EN		able: Inpu						
			e, 1 = Enal	ble					
		Internal P							
54	GAINO			Control: Input Pi					
56	GAIN1	GAIN1	GAIN0	MX1 Gain	MX0 Gain				
		0	0	1	1				
		0	1	2/3	2/3				
		1	0	1/2	1/2				
			Internal Pull-Downs External Flying Capacitor 1 (+)						
64	CFB1T								
66	CFB1B		· • ·	acitor 1 (-)					
68, 69				alog Input Pin					
72.73	MC1OUT			alog Output Pin					
75	CFB2T	External F	iying Capa	citor 2 (+)					

77	CFB2B	External Flying Capacitor 2 (-)
81	TPAD	Thermal Pad: No Connection
1,2,3,5, 7,	8,10,12,14,15,	Unused, Do Not Connect
17,14,15,1	17,18,19,20,22,	
23,25,27,3	80,31,34,36,38,	
39,41,42,4	13,45,47,49,51,	
53,55,57,5	58,59,60,62,63,	
65,67,70,7	71,74,76,78.79	

Table 2: HS100 Control IC Pin Assignments

Pin No.	Name	Description								
1	MCCLK	MuxCapacit	or Clock: Ou	tput Pin						
2	SOFSTRT	Soft Start Ti	mer: Output	: Pin						
3	GAIN0	MuxCapacit	MuxCapacitor Gain Control: Output Pins							
4	GAIN1									
5	LINE_IN 🛕	Rectified Lir	Rectified Line Voltage: High Voltage Analog Input Pin							
6	LINE_RDIV	Line Voltage	e Resistor Div	vider: Analo	g Input Pin					
7	LINE_OP1	Source Follo	Source Follower pin from LINE_RDIV							
		Add externa	al 0.1µF, 50V	capacitor						
8	VERG10	+10V Regula	ator: Analog	Output Pin						
		Add externa	al 10µF, 16V	capacitor						
9	FWDOUT	Forward Co	nverter FET	Driver: Outp	out Pin					
10	GND	Low Voltage	e Ground							
11	FWDIN	Forward Co	nverter Opto	Feedback:	Analog Input Pin					
12	TSTMD2	Test Mode	Control: Inpu	ıt Pins						
13	TSTMD1	TSTMD2	TSTMD1	TSTMD0	Test Mode Operation					
14	TSTMD0	0	0	0	DIGTST: OC Detect					
		0	0	1	DIGTST: FWD Clamp					
		0	1	0	DIGTST: FWD Softstart OK					
		0	1	1	DIGTST: 100kHz Ocsillator					
		1	0	0	Reset OC Detect					
		1	0	1	Disable FWD PID					
		1	1	0	ANATST: Bandgap Voltage					
		1 1 1 Logic Test Mode								
		Internal Pul	Internal Pull-Downs							
15	DIGTST	Digital Test	Mux: Outpu	t Pin						
16	EN	Device Enab	ole: Input Pir							

				-				
			0 = Disable, 1 = Enable					
		Internal P	Internal Pull-Down					
17	TIMER1	Soft Start	Soft Start Timer Control: Input Pins					
18	TIMERO	TIMER1	TIMER0	Soft Start Delay				
		0	0	10 msec				
		0	1	30 msec				
		1	0	20 msec				
		1	1	40 msec				
		Internal P	ull-Downs					
19	BGEXT	Optional E	External 1.	25V Bandgap: Analog	Input Pin			
		Set CTRLX	= 1 for us	e with external bandg	jap.			
20	GND	Low Volta	ge Ground					
21	IBIAS	Bias Curre	ent Referer	nce: Analog Output Pi	n			
22	VDDA	+5V Regul	ator: Anal	og Output Pin				
		Add exter	nal 10µF, 1	L6V capacitor				
23	ANATST	Analog Te	st Mux: Ou	utput Pin				
24	REXT	External B	ias Resisto	or: Analog Input Pin				
		Add exter	nal 499K 1	% resistor from REXT	pin to GND			
25	RCSP	Forward C	Converter (Current Sense: Analog	g Input Pin			
		Add exter	nal 0.5Ω 1	% current sense resis	tor to GND.			
26	CTRLX	Control/T	est Mode:	Input Pin				
		0 = Disabl	e, 1 = Enat	le Control Mode and	Test Modes			
		Internal P	Internal Pull-Down					
27	EXTRST	External R	eset: Inpu	t Pin				
		0 = Disabl	0 = Disable, 1 = Enable					
		Internal P	ull-Down					
28	MCEN	MuxCapa	citor Enabl	e: Output Pin				

2 Absolute Maximum Ratings

The HS100 chip-set can be exposed to the following extremes without permanent damage to device operation. Performance is not guaranteed at these extremes.

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Мах	Unit	Condition
V _{HVIO}	Voltage at all High-Voltage Analog I/O	-0.3		350	V	At pins VDDH, MC2IN, LINE_IN
V _{MVIO}	Voltage at all Mid-Voltage Analog I/O	-0.3		40	V	At pins LINE_RDIV, LINE_0P1
V _{LVIO}	Voltage at all Low-Voltage I/O	-0.3		6.0	V	
V _{HBM}	HBM ESD Voltage			2	ΚV	Human Body Model
V _{CDM}	CDM ESD Voltage			500	V	Charge Device Model
V _{MM}	MM ESD Voltage			200	V	Machine Model
V _{LU}	Latchup Test Limits	-100		100	mA	
T _{store}	Storage Temperature Range	-40		125	°C	
Тј	Junction Temperature Range	-40		125	°C	

3 Recommended Operating Conditions

The HS100 chip-set is designed to operate within the design limits specified in the Parametric Specifications when the conditions of the following table are not exceeded.

Table 4: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Condition
V _{HVIO}	Voltage at all High- Voltage Analog I/O	127	170	340	V	At pins VDDH, MC2IN, LINE_IN
V _{MVIO}	Voltage at all Mid-Voltage Analog I/O	12.7	17.0	34.0	V	At pins LINE_RDIV, LINE_0P1
V_{LVIO}	Voltage at all Low-Voltage Analog I/O	4.5	5.0	5.5	V	
T _a	Ambient Temperature Range	-40		85	°C	
Tj	Junction Temperature Range	-40		125	°C	

4 Parametric Specifications

The electrical characteristics of the HS100 Chip-Set are tested according to the following criteria noted in the Test column of each table:

- T : Directly or indirectly tested at 100% for production or prototype samples
- Q : Tested for qualification and bench evaluation
- D : Guaranteed by Design

All specifications apply only to the HS100 Control IC unless otherwise noted.

Table 5: Line-Side Bandgap Voltage Reference

Symbol	Parameter	Conditions	Test	Min ¹	Typ ²	Max ¹	Unit
VLINE0P1	Supply Voltage	At LINE_0P1	D	12.7		34.0	V
ILINEDP1	Supply Current	At LINE_0P1; en=1	D		8.3		μA
V _{BG}	Output Voltage	At ANATST; No trim	Т	1.158	1.219	1.28	V
V _{tol}	Output Voltage Tolerance	At ANATST; No trim	т			±5	%
Тс	Temp. coefficient	At ANATST	Q			300	ppm/°C
PSR	Power Supply Rejection	At ANATST; f=10KHz & 100KHz	Q	70			dB ₂₀
PSR _{DC}	DC supply rejection	At DC; f=0.001Hz	Q	90			dB ₂₀
V _N	Output Noise	Integrated Noise; 10Hz ≤ f ≤ 10KHz	D			1000	µVrms
I _{BIAS}	Output Current	At IBIAS; T=25°C; R _{EXT} =500KΩ 1%	D	0.94	1.0	1.06	μA
CL	Output Load Capacitance	At VBG	D			2	pF
t _{RAMP}	Supply Ramp Time	At LINE_0P1	D	0.1		100	mS
ts	Startup time	At VBG; For 100µS ramp at LINE_0P1	D			2000	μS
I _{LKG}	Disabled Leakage Current	en=0	D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated.

2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 6: 5.0V Linear Voltage Regulator

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit	
V_{REF}	Reference Input Voltage	Bandgap voltage at V _{BG}	D		1.219		V	
V _{out}	Output Voltage	At VDDA; 100μA ≤ I _{LOAD} ≤ 10mA	т	4.5	5.0	5.5	V	
VR	Line Regulation	At VDDA; I _{LOAD} = 2mA;	Т			100	m%	
LR	Load Regulation	At VDDA; 0 ≤ I _{LOAD} ≤ 10mA	т			100	m%	
A _{OL}	Open Loop Gain	In-Circuit; I _{LOAD} = 2mA C _{LOAD} =11μF,	D	90			dB	
		I _{LOAD} = 1μA	D	80				
фм	Phase Margin	In-Circuit; I _{LOAD} = 2mA C _{LOAD} =11μF	D	70			Deg.	
,		I _{LOAD} = 1μA	D	65				
PSRR	Power Supply	f=10KHz; C _L =11μF; Ι _{LOAD} = 2mA	Q	40			dB	
PORK	Rejection Ratio	f=dc; C _L =11µF; I _{LOAD} = 2mA	Q	60			dB	
V _{os}	Input-Referred Offset	6σ Mismatch; I _{LOAD} = 2mA	D			15	m∨	
I _{SUP}	Power Supply Current	en=1; No Load;	D			1	μΑ	
I _{lkg}	Off-State Leakage Current	en=0; No Load	D			10	nA	

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated.

2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 7: Power-On-Reset

Symbol	Parameter	Condition	Test	Min ¹	Тур²	Max ¹	Unit
V _{SUP}	Supply Voltage	At VDDA	D	4.5	5.0	5.5	V
V _{POR}	POR Threshold		Q	2.8	3.0	3.2	V
V _{HYS}	Input Voltage Hysteresis		Q	200	300	450	mV
I _{SUP}	Enabled Drain Current	For information only	D		3.1		μA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated.

2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 8: Hysteresis Comparators (Country Selector)

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit
V _{ICM}	Input Common-Mode Voltage Range		D	0.7	1.25	2	v
•	Veltere Cein	L>H at OUT; V _{ICM} =1.25V; Hyst OFF	D	1.0			
Av	Voltage Gain	H>L at OUT; V _{ICM} =0.9V; Hyst OFF	D	1.0			- KV/V
		hyst<1:0>=0	Q		0		mV
	lana di Ukasha na sia	hyst<1:0>=1	Q		10		
V _{HYST}	_{s⊤} Input Hysteresis hy	hyst<1:0>=2	Q		20		
		hyst<1:0>=3	Q		30		
t _{PD_LH}	Comparator Prop. Delay – Low to High	3mV Overdrive	D			20	μS
t _{PD_HL}	Comparator Prop. Delay – High to Low	3mV Overdrive	D			20	μS
t _{RISE}	Output Rise Time	3mV Overdrive	D			10	nS
t _{FALL}	Output Fall Time	3mV Overdrive	D			10	nS
I _{VDDA}	Power Supply Current	en=1; V _{DDA} = 5.0V	D		1.8		μA
I _{LKG}	Off-State Leakage Current	en=0; V _{DDA} = 5.0∨	D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 9: MuxCapacitor[®] Voltage Divider (MuxCapacitor IC only)

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit
VIN	Input Voltage	At VDDH / MCIN2 pins	D	90	170	340	V
P_{EFF}	Power Efficiency	At I _{MCOUTx} =50mA	Т	95			%
VOLT	MuxCapacitor Output Voltage	I _{MCOUT} =50mA	т	90	1 1 0	130	v
F₅₩	Switching Frequency		D		1		KHz
T _{ST}	SoftStart Timer Period	Programmable via the Low-Voltage IC	D		10		mS
C _{FLYBK}	Flyback Capacitance		D		3.3		μF
CHOLD	Hold Capacitance		D		7.5		μF
R _{olt}	Output Resistance		D		30		Ω
Імсолт	Output Load Current Range	At MCOUTx	т	0		50	mΑ
Islp	Enabled Current Drain	Single stage (static+fcV)	D			120	μA
l _{lkg}	Disabled Current Drain		D			0.2	μA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 10: Low-Frequency RC Oscillator

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit
fasc	Oscillator Frequency	At DIGTST	Т	70	100	130	KHz
f _{ERR}	Frequency Accuracy	No Trim	Т	-30		+30	%
t _{ccJ}	Cycle-to-Cycle Jitter		Q		25		nS
t _{start}	Startup Time		D		200		μS
DC	Output Duty Cycle		Q	45	50	55	%
I _{SUP}	Drain Current	For information only	D			0.5	μA
I _{LKG}	Off-State Leakage Current	En=0	D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 11: 3.2MHz Oscillator (MuxCapacitor IC only)

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit
V _{SUP}	Supply Voltage	At VDDA	D	4.5	5.0	5.5	V
f _{osc}	Oscillator Output OSC<1:0>=0x0		1.12	1.6	2.08		
	Frequency	OSC<1:0>=0x1		0.56	0.8	1.04	
		OSC<1:0>=0x2	- T	0.28	0.4	0.52	— MHz —
		OSC<1:0>=0x3		-	-	-	
f _{ERR}	Frequency Accuracy	No Trim	Т	-30		30	%
DC	Output Duty Cycle		Q	45	50	50	%
t _{start}	Startup Time		D		10		μS
I _{SUP}	Drain Current	For information only	D			20	μA
I _{LKG}	Off-State Leakage Current		D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 12: Sawtooth Generator

Symbol	Parameter	Condition	Test	Min ¹	Typ ²	Max ¹	Unit
V _{SUP}	Supply Voltage	At VDDA	D	4.5	5.0	5.5	V
f _{CLK}	Clock Frequency		D		100		KHz
Vicm	Common-Mode Input Voltage		D	0	1.25	2	v
V _{OUT}	Output Voltage (Pk-Pk)		D	1.9	2.7	3.5	V _{PP}
I _{SUP}	Drain Current	For information only	D			20	μA
I _{lkg}	Off-State Leakage Current	En=0	D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated.2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 13: Forward PID Control Loop

Symbol	Parameter	Condition	Test	Min ¹	Typ²	Max ¹	Unit
V _{IN}	Input Voltage Range	Scaled Input Voltage	D	0	1.25	5	V
REG _{PID}	Output Regulation	At Forward Converter output; $0 \le I_{LOAD} \le 2A$	Q	-5		+5	%
LBW _{PID}	Loop Bandwidth		Q			10	KHz
PM _{PID}	Phase Margin		D		70		Deg
f _{Z1}	First Zero Frequency	Filtered PID	D		1.7		KHz
f _{Z2}	Second Zero Freq.	Differentiator Response	D		3.4		KHz
f _{P1}	First Pole Frequency	Integrator Response	D		3.4		KHz
f _{P2}	Second Pole Freq.	Proportional Pole	D		56		KHz
f ₽₩M	PWM Switching Freq.		D		100		KHz
DC _{MAX}	Max Clamped Duty Cycle		Q		65		%
OCP	Over Current ProtectionThreshold		т		2.5		А
T _{START}	Startup Time	Due to soft start	Q		1	1.6	ms
I _{VDDA}	Current Drain		D			20	μA
I _{LKG}	Off-State Leakage Current		D			10	nA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated.

2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Symbol	Parameter	Condition	Test	Min ¹	Тур²	Max ¹	Unit
VIL	Input Low Voltage	$4.5 V \le V_{DDA} \le 5.5 V$	D	-0.3		0.8	V
Vih	Input High Voltage	$4.5V \le V_{DDA} \le 5.5V$	D	2.0		V _{DDIO} + 0.3V	V
IILEAK	Input Leakage Current	No Pull Up/Down		-10		10	μA
I _{PD}	Input with Pull Down	At CTRLX, TSTMD<2:0> EN, TIMER1, TIMER0		3	15	40	μA

Table 14: CMOS Digital Inputs (TTL)

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

Table 15: CMOS Digital Outputs (TTL)

Symbol	Parameter	Condition	Test	Min ¹	Тур²	Max ¹	Unit
V _{OL}	Output Low Voltage	$4.5 V \le V_{DDA} \le 5.5 V$	D			0.4	V
V _{он}	Output High Voltage	$4.5 V \le V_{DDA} \le 5.5 V$	D	2.4			V
I _{он}	Output Current	$4.5V \le V_{DDA} \le 5.5V$				1	mA

Notes: 1. Min and Max values are valid over Operating Conditions, unless otherwise stated. 2. Typ values are valid at typical Operating Conditions and typical process Parameters.

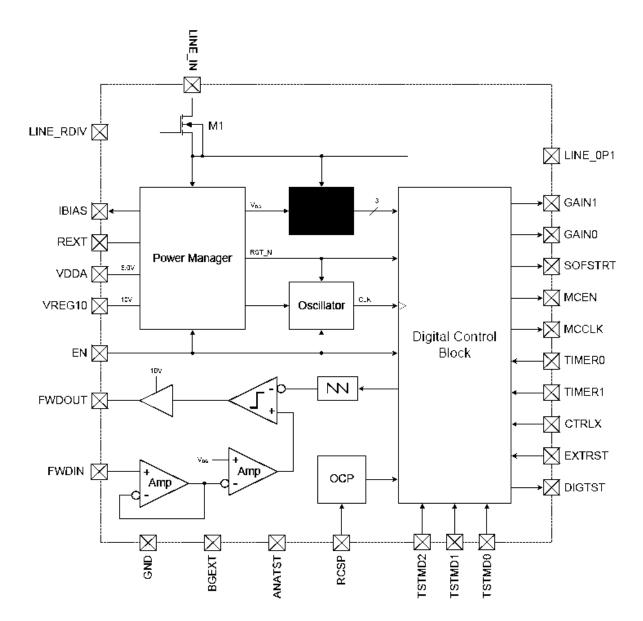


Figure 2: HS100 MuxCapacitor IC Block Diagram

Figure 3: HS100 Control IC Block Diagram

5 Functional Description

The Helix Semiconductors HS100 chip-set is comprised of two ICs: MuxCapacitor IC and Control IC. The HS100 chip-set reduces the rectified AC line voltages of 90V – 240V to 5.0VDC with an output current of up to 2.0A for AC line voltages 90- 120VAC or up to 1A for 220-240VAC.

5.1 HS100 MuxCapacitor IC

The HS100 MuxCapacitor IC contains all of the high-voltage circuitry required for reducing the rectified AC Mains voltage to an optimal primary-side voltage for a forward converter isolation transformer. Startup and control of the MuxCapacitor IC is provided by the companion HS100 Control IC.

The block diagram of the HS100 MuxCapacitor IC illustrates the two MuxCapacitor voltage-divider stages and the required support circuitry. Each MuxCapacitor stage can be independently configured for either parallel or series connectivity as required by the application. For increased current capability, the two MuxCapacitor stages can be externally connected in parallel for 2X the current of a single MuxCapacitor stage.

For greater voltage division, the MuxCapacitors can be externally cascaded to provide a reduced voltage at the IC's output. For all cascaded (or series connected) applications the first MuxCapacitor stage must be connected to the highest input voltage at the VDDH pin. The MuxCapacitor output at MC10UT is then connected to the second MuxCapacitor input at MC2IN.

A Soft-Start current limiting switch is included to limit the inrush current from the VDDH input. Additional resistance in series with the switch limits the current to protect the MuxCapacitor power transfer switches until the external hold capacitor at MC1OUT is fully charged. The time period for the Soft-Start feature is controlled by the Control IC and output to the MuxCapacitor's SOFSTRT input.

An on-chip oscillator provides a 1.6MHz clock for the Dickson Charge Pump (DCP) voltage boosters. The voltage boosters provide the high side gate signals to the MuxCapacitor stages. The bias current for the Oscillator as well as the MuxCapacitor stages is provided by the IBIAS input.

5.1.1 MuxCapacitor Voltage Divider

The HS100 MuxCapacitor IC voltage dividers reduce the DC voltage present at their input pins to a lower voltage at their respective MCxOUT pins. Each MuxCapacitor stage has a programmable gain of 1.0, 0.66 or 0.5 set by the GAIN1 and GAIN0 input pins. The truth table for the gain selection of the MuxCapacitor stages is shown in the table below.

Inpu	t Pin	MuxCapacitor Gain			
GAIN1	GAIN0	Stage 1	Stage 2		
0	0	1	1		
0	1	0.66	0.66		
1	0	0.5	0.5		
1	1	0.66	0.5		

Table 16: MuxCapacitor Gain Selection Truth Table

Each MuxCapacitor stage can deliver up to 50mA of current. The output voltage is dependent on the gain setting and the input voltage. Two external fly-back capacitors and a hold capacitor are required per MuxCapacitor stage. These capacitors are connected to the CFBxT, CFBxB, and MCxOUT pins, respectively. The MuxCapacitor stages are clocked at a rate of up to 1KHz from the MCxCLK input clock pin. The duty cycle of the clock is 50%.

5.1.2 Dickson Charge Pumps

The Dickson Charge Pumps (DCP's) are used to provide a boosted voltage for the gates of the NMOS high-voltage switches. The MuxCapacitor has multiple high side switches and each switch has a DCP that is clocked at 1.6 MHz. The DCPs generate a voltage that is 15V greater than the voltage at the MuxCapacitor's input pin. The DCP's clock is provided by the High-Frequency Oscillator.

5.1.3 Level Shifters

Each NMOS high-voltage switch has a corresponding level shifter to translate the drive signal from the low-voltage domain to the boosted voltage provided by the DCP's. Each high-voltage switch has an optimally sized level shifter based on its gate drive characteristics.

5.1.4 Soft-Start Current Limiter

A Soft-Start current limiting switch is provided for the first MuxCapacitor stage to limit in-rush current at startup. The switch and a series connected resistor are placed in parallel with the primary power

switches from the input to the output of the MuxCapacitor stage. The current is limited by the resistor when the switch is enabled.

The Soft-Start sequence is initiated and controlled by a programmable timer located in the HS100 Control IC. During the SOFTST timer period all MuxCapacitor power transfer switches are disabled to eliminate any low-resistance paths from input to output. Once the timer completes the cycle, all switches are then enabled for normal operation. The current limiting switch is enable by setting the SOFTST pin high. The MuxCapacitor is enabled by setting the MC1EN pin high. Therefore, during soft start, SOFTST = 1 and MC1EN = 0. For normal operation, SOFTST = 0 and MC1EN = 1.

5.1.5 3.2MHz Oscillator

The 3.2MHz Oscillator provides the high-frequency clock for the HS100 MuxCapacitor IC. It contains a divide-by-two to produce a 1.6MHz, 50% duty cycle clock for the Dickson Charge Pumps for each MuxCapacitor stage. The frequency of the oscillator can be programmed with the OSC1 and OSC0 pins according to the following table.

Inpu	t Pin	Oscillator
OSC1	OSC0	Frequency
0	0	1.6MHz
0	1	0.8MHz
1	0	0.4MHz
1	1	Disabled

Table 17: Oscillator Frequency Control

5.2 HS100 Control IC

The HS100 Control IC provides all the low-voltage bias and support circuitry required for startup and control of the HS100 MuxCapacitor IC and the external Forward Converter.

The rectified AC-Mains voltage is input at the LINE_IN pin to provide power to the Control IC. An onchip source follower M1 reduces the voltage for internal Low Drop-Out (LDO) regulators. An external resistor divider at the LINE_RDIV pin provides the gate bias for M1 such that the voltage at LINE_OP1 (M1 drain) is 1/10 of the incoming LINE_IN voltage. The LINE_OP1 voltage is used to supply all of the internal circuits on the Control IC.

The LINE_OP1 voltage is also used to sense the incoming AC-Mains voltage and is input to the Country Selector. The Country Selector determines the proper gain setting for the MuxCapacitor IC by setting the GAIN0 and GAIN1 outputs of the Digital Control Block as a function of the region of operation, i.e. Japan/US or Universal.

The Power Manager provides all the reference voltages and currents for the Control IC. The following circuits reside within the Power Manager: Bandgap Voltage Reference, 5.0V Linear Voltage Regulator (LVR) and Power-on-Reset (POR). These cells are always powered on when the LINE_IN voltage is applied and cannot be disabled. The Power Manager also contains a Voltage-to-Current Converter (VTOI) which sources current for use by all on-chip analog circuits. The VTOI reference is a precision external resistor connected to the REXT pin. In addition, a 1µA current is replicated and output at the IBIAS pin for use by the MuxCapacitor IC. The EN pin is used to disable the VTOI and Current Manifold for reduced power consumption during idle mode of operation.

The 5.0V LVR supplies the voltage for the Digital I/O on the Control IC and also supplies the VDDA supply voltage for the MuxCapacitor IC. A 10V LVR is also provided at the VREG10 pin to supply the voltage for the Forward Converter output driver connected to the FWDOUT pin.

The Control IC also provides the circuitry required to control an external Forward Converter using an Opto-Isolator feedback circuit. The analog Opto-Isolator input singal at the FWDIN pin is converted to a Pulse-Width-Modulated (PWM) signal to control an external MOSFET connected at the FWDOUT pin. Pulse-Width-Modulation is performed at a rate of 100KHz with a clock provided by the on-chip RC Oscillator.

The Digital Control Block provides logic for the configuration of the MuxCapacitor IC and control of the Forward Controller. The MCEN and MCCLK outputs provide the enable and clock for the MuxCapacitor IC. All clocks used on the Control IC are derived from the on-chip 200KHz Oscillator. This clock is divided down to 100KHz for the Forward Controller and to 1KHz for the MCCLK output. The Digital Control Block also contains a programmable timer for the Soft-Start control of the

MuxCapacitor IC via the SOFSTRT pin. Testibility logic is also provided for the Control IC and is controlled as a function of the TESTMD<2:0> input pins and the EXTRST pin.

The Control IC can be disabled using the EN input pin. When EN=0, the Control IC will be disabled and all analog and digital circuits are turned off.

5.2.1 Line-Side Bandgap Voltage and Current Reference Generator

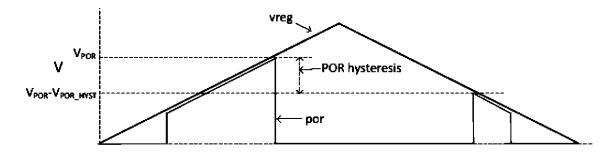
The Control IC contains an ultra-low power Bandgap Reference Voltage and Current generator which is powered from LINE_OP1. A temperature-compensated output voltage of 1.22V is provided for use as a reference by subsequent circuit blocks. The bandgap cell is self-starting at the application of the LINE_IN voltage and is always powered on and cannot be disabled.

An optional external shunt Bandgap can be used in place of the internal Bandgap Voltage Reference. The external Bandgap device is connected to the BGEXT pin and is selected when the CTRLX pin is asserted 'high'. The required external Bandgap voltage is 1.25V.

5.2.2 5.0V Linear Voltage Regulator

The 5.0V Linear Voltage Regulator (LVR) is used to supply the voltage for the analog and digital circuits, and the I/O padring of the Control IC. The output of the Regulator is available at the VDDA pin to power the MuxCapacitor IC. An external 10μ F caoacitor must be connected between VDDA and ground for noise reduction.

The 5.0V LVR is always powered on at the application of the LINE_IN voltage and cannot be disabled.


5.2.3 Power-on-Reset

The Power-on-Reset (POR) circuit monitors the internal VDDA supply voltage. For voltages at the VDDA pin less than the VPOR threshold voltage, the POR output will be asserted 'low' indicating a reset condition. For voltages at the VDDA pin greater than the VPOR threshold voltage, the POR output will be de-asserted 'high' for normal operation. Hysteresis is provided such that a reduction in the threshold voltage occurs once the VPOR threshold is exceeded. The reduced threshold with hysteresis now becomes VPOR - VHYS.

An illustration of the operation of the power-on-reset block for a voltage ramp at the VDDA pin is shown below. The POR circuit is always powered on at the application of the LINE_IN voltage and cannot be disabled.

Figure 4: POR Threshold Voltages

5.2.4 VTOI and Current Manifold

The Voltage-to-Current Converter (VTOI) produces a current referenced from an external precision resistor connected to the REXT pin. Using the Bandgap reference voltage, the VTOI generates a 0.5V bias at the REXT pin. With the connection of a 499K Ω , 1% resistor from REXT to ground, a precision 1µA current is generated. The Current Manifold uses this precision current to supply the bias currents to the analog circuits in the Control IC. A 1µA reference current is also output at the IBIAS pin for use by the MuxCapacitor IC.

5.2.5 Oscillator

The ultra-low power 200 KHz RC Oscillator produces the low-frequency clocks for the Control IC. The output of the oscillator is divided down to 100KHz for the Digital Control Block which provides clocks to the MuxCapacitor IC and the Forward PID Controller.

5.2.6 10V Linear Voltage Regulator

The 10V LVR provides the supply voltage for the Forward Converter output driver at the FWDOUT pin. The output of the 10V LVR is available at the VREG10 pin. An external 10μ F caoacitor must be connected between VREG10 and ground for noise reduction.

5.2.7 Forward PID Controller

The Forward PID Controller controls the external MOSFET of the Forward Converter using an optoisolator feedback circuit. The feedback voltage signal is input at the FWDIN pin and is compared to the Bandgap voltage to generate an error voltage for the loop. The Error Amplifier creates a 3rd order compensation network with on-chip passive components. The resulting transfer function of the PID Feedback Loop is comprised of 2 poles and 2 zeros to ensure that the regulator output is stable for the full range of load conditions.

The two zeroes provide 180 degree of phase boost in order to negate the 180 degree of phase loss due to the output LC filter. Both zeroes are placed at 50% of the LC filter pole frequency. The two poles are located at the switching frequency of the converter (100KHz). The Forward PID Feedback Loop uses Pulse-Width Modulation (PWM) to control the amount of time the external MOSFET switch is turned 'on' to supply current to the load. This is achieved with a comparator which receives the output of the Error Amplifier and compares it to the sawtooth waveform output of the Sawtooth Generator. The 100 KHz clock provided by the Digital Control Block is used by the Sawtooth Generator to develop the sawtooth input to the Comparator.

5.2.8 Country Selector

The Country Selector uses the scaled LINE_IN voltage at LINE_OP1 to determine the appropriate gain (or divider ratio) for the MuxCapacitor stages of the MuxCapacitor IC. The scaled LINE_IN voltage is compared to the Bandgap reference voltage to output one of the possible gain settings as a function of the AC Mains voltage. The outputs of the Country Selector are input to the Digital Control Block to decode the appropriate gain setting required by the MuxCapacitor IC.

5.2.9 Over-Current Protection

Overcurrent protection for the Forward Converter is achieved by sensing the current flowing through the external switching MOSFET and the primary winding of the transformer. The voltage developed across the external current sense resistor is placed in series with the MOSFET and transformer is applied to the pin RCSP. This RCSP voltage is compared to a reference voltage. When an over-current condition is detected the Forward PID Controller is disabled and the DIGTST output pin will be asserted 'high'. The Forward PID Controller will remain disabled until the TSTMD2 input is momentarily asserted 'high'. Then the Forward Converter operation will be restored.

5.3 Digital Control Block

The Digital Control Block provides the logic control and configuration of the MuxCapacitor IC as well as control of the Forward PID Controller. The block diagram of the Digital Control Block is shown below.

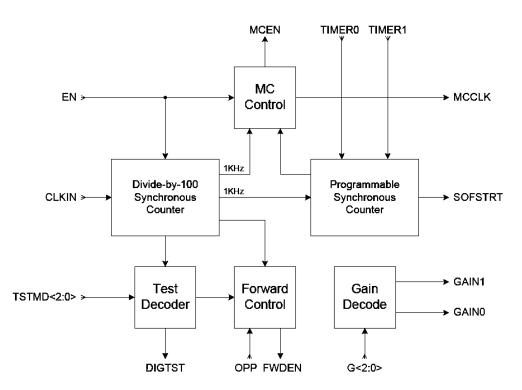


Figure 5: Digital Control Block Diagram

All clocks used in the Control IC are derived from the on-chip Oscillator which is divided down by a 5bit synchronous counter to create the 1KHz for the MCCLK output. The 1KHz output of the counter is also used for the programmable Soft-Start timer for the SOFSTRT pin. The Soft-Start timer is programmable to one of four possible timeout values using the TIMERO and TIMER1 input pins as shown below.

TIMER1	TIMER0	SOFSTRT Timeout (mS)
0	0	10
0	1	30
1	0	20
1	1	40

Table 18: Soft-Start Timer Program Settings

The Gain Decode block receives the Country Selector outputs and creates the GAIN0 and GAIN1 outputs to control the MuxCapacitor IC gain setting

The Forward Control block provides the enable for the Forward PID Controller and also disables the block when an over-current detection is detected at the *OPP* input of the RCSP pin. Following the over-current event detection, the *OPP* signal is reset by the assertion of the TSTMD<2> input pin.

Logic is also provided for testing the Control IC as a function of the TESTMD<2:0> input pins and the EXTRST pin. When the EXTRST pin is asserted 'high' all of the digital logic is reset overriding the internal Power-on-Reset. The three TSTMD inputs provide access to internal analog and digital signals through the use of digital and analog multiplexers. Internal digital signals can be multiplexed to the DIGTST output and internal analog signals can be multiplexed to the ANATST pin. The truth table for the digital test mode inputs is shown below.

Test Select Input Pins			Function		
TSTMD2	TSTMD1	TSTMD0	Function		
0	0	0	DIGTST = Over-Current Detect Output		
0	0	1	DIGTST = Forward Clamp Comparator		
0	1	0	DIGTST = Forward Softstart OK		
0	1	1	DIGTST = 100KHz Oscillator Output		
1	0	0	Reset Over-Current Detection		
1	0	1	Disable Forward PID Controller		
1	1	0	ANATST = Bandgap Voltage		
1	1	1	Logic Test Mode		

Table 19: Test Select Truth Table

When TSTMD<2:0> = 3'b111, the Logic Test Mode is enabled. This allows an external clock to be input at the CTRLX pin bypassing the on-chip oscillator. A higher-speed clock can be used to test the digital logic reducing the test time.

The digital inputs of the Control IC are configured as a NAND-Tree allowing the inputs to be tested at wafer probe or package test. When the EXTRST pin is asserted 'high' the NAND-Tree is enabled with the output muxed to the MCEN output pin. The test begins with all inputs asserted 'high' as shown below. They are sequentially taken 'low' in the order shown in the table.

CTRLX	TSTMD2	TSTMD1	TSTMD0	EN	TIMER1	TIMER0	MCEN
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	0
1	0	1	1	1	1	1	0
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	0
1	1	1	1	0	1	1	0
1	1	1	1	1	0	1	0
1	1	1	1	1	1	0	0

Table 20: NAND-Tree Test Sequence

6 Reference System Application

The following system diagram provides a 10W application schematic for a 5.0V output. The HS100 chip-set is combined with a Forward Converter delivering the specified efficiency for a load of 50mA to 2.0A. In this configuration the MuxCapacitor stages of the MuxCapacitor IC are connected in parallel to deliver 100mA at the input to the transformer primary.

Other configurations are possible including World-wide applications.

The electrical characteristics of the HS100 Reference System are summarized.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit	
V _{AC}	AC Input Voltage	US-only operation	108	120	132	VAC	
		World-wide operation	90		240		
V _{LINE_IN}	DC Line Voltage	US-only operation	152	170	187	VDC	
		World-wide operation	127		340		
Fin	Input Frequency		47		63	Hz	
V _{PRIM}	Primary Voltage			110		V	
Q _{ir}	In-Rush charge				TBD	Coulombs	
Vo	Output Voltage	Average voltage	4.75	5.0	5.25	Vdc	
l _o	Output Current		0		2.0	A	
Pout	Output Power				10	W	
V _{oa}	Output Accuracy		-5.0		+5.0	%	
VR	Voltage Regulation	$50mA \le I_{LOAD} \le 2.0A$			TBD	%	
V _{RIPPLE}	Output Voltage Ripple		-2		+2	%	
V _{td}	Voltage Temp drift				TBD	% / °C	
EF _{fl}	Efficiency, Full Load	Pout/Pin	95			%	
EF	Efficiency, Light Load	Pout/Pin	92			%	
Pni	No Load Power Output				10	m₩	

Table 21: HS100 System Characteristics

Figure 6: HS100 Japan/USA Application Schematic

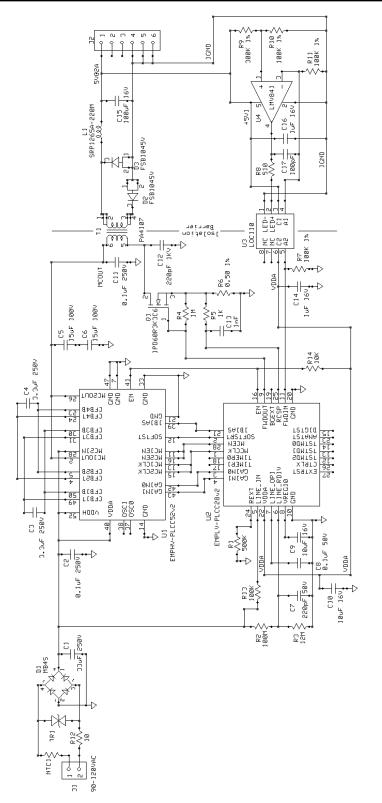
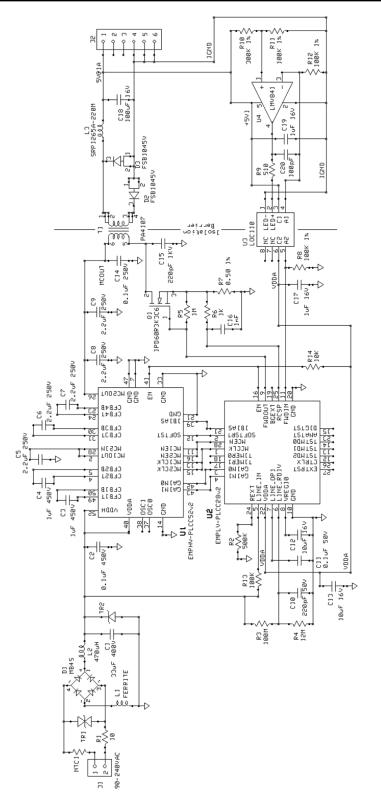
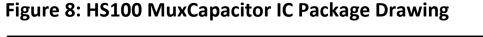
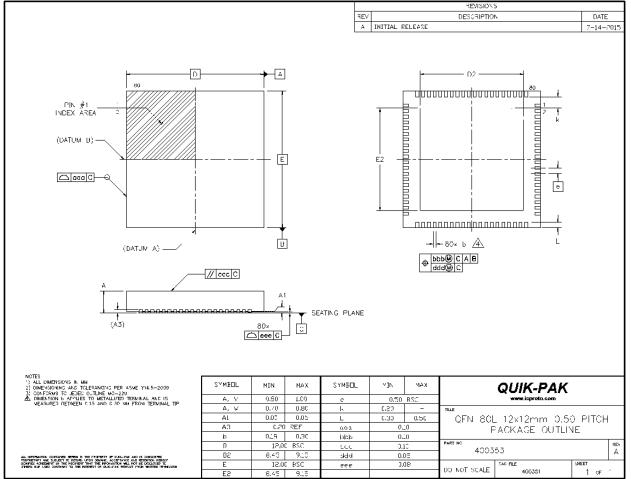



Figure 7: HS100 Universal Application Schematic

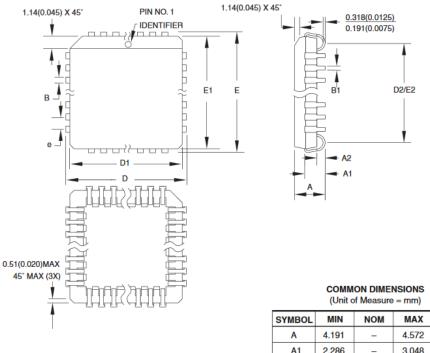



7 Package Drawings

The packages for the HS100 MuxCapacitor and Control IC's are shown in the following drawings.

7.1 MuxCapacitor IC

The HS100 MuxCapacitor IC is packaged in a 80-pin QFN package as shown below.



7.2 Control IC

The HS100 Control Low-Voltage IC is packaged in a 28-pin PLCC package as shown below.

Figure 9: HS100 Control IC Package Drawing

- Notes: 1. This package conforms to JEDEC reference MS-018, Variation AB.
 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
 - 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

NOTE 2.286 A1 3.048 A2 0.508 D 12.319 12.573 _ D1 11.430 _ 11.582 Note 2 Е 12.319 12.573 E1 11.430 11.582 Note 2 D2/E2 9.906 10.922 В 0.660 0.813 _ B1 0.330 0.533 1.270 TYP е

Table 22: Revision History

Date	Revision	Description
3.15.17	1	Initial Release

Headquarters

9980 Irvine Center Drive Suite 100 Irvine, CA 92618

Information & Sales 949-748-6057 sales@helixsemiconductors.com

Technical Support 949-748-7026 support@helixsemiconductors.com

Regional Office

5475 Mark Dabling Blvd. Suite 206 Colorado Springs, CO 80918

949-748-6057 designs@helixsemiconductors.com